Distributed and Operating Systems Spring 2025

Prashant Shenoy

UMass CICS

http://lass.cs.umass.edu/~shenoy/courses/677

1

University of Massachúsetts

Compsci 677: Distributed and Operating Systems

Lec 01

Module 1: Course Syllabus

- COMPSCI 677: Distributed and Operating Systems
- Course web page: http://lass.cs.umass.edu/~shenoy/courses/677
 - -Syllabus posted on the course web page.
- · Class has three sections
 - -Section 1 (classroom section)
 - -Section 2 (online section)
 - –UWW section (online section)
 - -All 3 sections do the same work (exams, lab, homework, etc)

University of Massachúsetts

Compsci 677: Distributed and Operating Systems

Course Staff

• Instructor: Prashant Shenoy

- Email: shenoy@umass.edu, Phone: (413) 577 0850 - Office hours: W: 4-5pm LGRC A333 (also over zoom)

Teaching Assistants

Shastri

Sukprasert

Chhaglani

3

Wang

Thibideu

Gudipaty

TA Office Hours: will be posted soon

Course/Grading Assistants: Manish, Simran. Niti, Shruitya, Akhil, Sai, Vaishnavi, Shreya

Massachúsetts Amherst

Compsci 677: Distributed and Operating Systems

Lec. 01

Course Textbook

- *Textbook:*
- Distributed Systems, 4th ed, by Tannenbaum and Van Steen, 2023
 - PDF version of this text is available for free from authors
- Distributed Systems, Older 2nd Edition, is also available as a PDF for free from authors
- Distributed and Operating Systems Readings and Course Notes
- All Download links on Course Materials section of Course website

University of Massachusetts

Compsci 677: Distributed and Operating Systems

Course Outline

- Introduction (today)
 - What, why, why not?
 - Basics
- · Distributed Architectures
- Interprocess Communication
 - RPCs, RMI, message- and stream-oriented communication
- · Processes and their scheduling
 - Thread/process scheduling, code/process migration, virtualization
- Naming and location management
 - Entities, addresses, access points

Massachúsetts

Compsci 677: Distributed and Operating Systems

Lec. 01

5

Course Outline

- Canonical problems and solutions
 - Mutual exclusion, leader election, clock synchronization, ...
- Resource sharing, replication and consistency
 - DFS, consistency issues, caching and replication
- Fault-tolerance
- Security in distributed Systems
- Distributed middleware
- Advanced topics: web computing, cloud computing, edge computing, sustainable computing, big data, multimedia, and Internet of Things (IoT)

University of Massachusetts

Compsci 677: Distributed and Operating Systems

Course Grading

- Grading
 - 2 exams: one midterm and one final (44%)
 - 3 programming labs (43%),
 - Assignments (lablets and homework problem sets) (12%)
 - class participation/quizzes/piazza discussions: (1%)
- Pre-requisites
 - Undergrad course in operating systems
 - Good programming skills in a high-level prog. language

University of Massachúsetts Amherst

Compsci 677: Distributed and Operating Systems

Lec. 01

Course Tools

- Piazza: online discussion forum.
 - https://piazza.com/umass/spring2025/compsci677
- Gradescope: Used for assignments and exams
- Github Classroom: Used for labs
- We have enrolled you on piazza, gradescope and GitHub classroom!
- Web page: https://lass.cs.umass.edu/~shenoy/courses/677
- Youtube Channel: https://youtube.com/umassos
- Canvas: Mostly used as an online grade book

University of Massachusetts

Compsci 677: Distributed and Operating Systems

Lec 01

Course Policies

• Class Participation: Need a scribe for each class (participation points available)

• Device Policy:

University of Massachusetts Amherst

Compsci 677: Distributed and Operating Systems

Lec. 01

9

Module 2: Why Distributed Systems?

- Many systems that we use on a daily basis are distributed
 - World wide web, Google
 - Cloud computing, e.g., Amazon.com
 - Peer-to-peer file sharing systems
 - SETI@Home
 - Grid and cluster computing
 - Modern networked computers
- Useful to understand how such real-world systems work
- Course covers basic principles for designing distributed systems

University of Massachusetts Amherst

Compsci 677: Distributed and Operating Systems

Lec. 01

Definition of a Distributed System

- Networked system Multiple computers connected over a network
- **Distributed** system A networked system of independent computers that appears to its users as a single coherent system
- Examples: parallel machines, networked machines
- Decentralized system networked system where processes and resources are necessarily spread across multiple computers
- Distributed system networked system where processes and resources are sufficiently spread across multiple computers

Compsci 677: Distributed and Operating Systems

Lec. 01

1

11

Advantages and Disadvantages

Advantages

- Communication and resource sharing possible
- Economics price-performance ratio
- Reliability, scalability
- Potential for incremental growth

Disadvantages

- Distribution-aware PLs, OSs and applications
- Network connectivity essential
- Security and privacy

University of Massachusetts

Compsci 677: Distributed and Operating Systems

Lec. 01

Transparency in a Distributed System

Transparency	Description			
Access	Hide differences in data representation and how a resource is accessed			
Location	Hide where a resource is located			
Migration	Hide that a resource may move to another location			
Relocation	Hide that a resource may be moved to another location while in use			
Replication	Hide that a resource may be replicated			
Concurrency	Hide that a resource may be shared by several competition users			
Failure	Hide the failure and recovery of a resource			
Persistence	Hide whether a (software) resource is in memory or on disk			

Different forms of transparency in a distributed system.

University of Massachusetts Amherst

Compsci 677: Distributed and Operating Systems

Lec. 01

13

13

Open Distributed Systems

- · Offer services that are described a priori
 - Syntax and semantics are known via protocols
- · Services specified via interfaces
- · Benefits
 - Interoperability
 - Portability
- Extensibility
 - Open system evolve over time and should be extensible to accommodate new functionality.
 - Separate policy from mechanism

University of Massachusetts

Compsci 677: Distributed and Operating Systems

Lec. 01

Scalability Problems

Concept	Example		
Centralized services	A single server for all users		
Centralized data	A single on-line telephone book		
Centralized algorithms	Doing routing based on complete information		

Examples of scalability limitations.

University of Massachusetts Amherst

Compsci 677: Distributed and Operating Systems

Lec. 01

15

15

Scaling Techniques

- Principles for good decentralized algorithms
 - No machine has complete state
 - Make decision based on local information
 - A single failure does not bring down the system
 - No global clock
- Techniques
 - Asynchronous communication
 - Distribution
 - Caching and replication

University of Massachusetts

Compsci 677: Distributed and Operating Systems

Lec. 01

Module 3: Distributed Systems History and OS Models

- Minicomputer model (e.g., early networks)
 - Each user has local machine
 - Local processing but can fetch remote data (files, databases)
- Workstation model (e.g., Sprite)
 - Processing can also migrate
- Client-server Model (e.g., V system, world wide web)
 - User has local workstation
 - Powerful workstations serve as servers (file, print, DB servers)
- Processor pool model (e.g., Amoeba, Plan 9)
 - Terminals are Xterms or diskless terminals
 - Pool of backend processors handle processing

University of Massachusetts Amherst

Compsci 677: Distributed and Operating Systems

Lec. 01

17

17

Distributed System Models (contd)

- Cluster computing systems / Data centers
 - LAN with a cluster of servers + storage
 - · Linux, Mosix, ..
 - Used by distributed web servers, scientific applications, enterprise applications
- Grid computing systems
 - Cluster of machines connected over a WAN
 - SETI @ home
- WAN-based clusters / distributed data centers
 - Google, Amazon, ...
- · Virtualization and data center
- · Cloud Computing

University of Massachusetts

Compsci 677: Distributed and Operating Systems

Lec. 01

Emerging Models

- Distributed **Pervasive** Systems (aka ubiquitous computing systems)
 - "smaller" nodes with networking capabilities
 - Computing is "everywhere"
 - Home networks: TiVO, Windows Media Center, ...
 - Mobile computing: smart phones, iPADs, Car-based PCs
 - Sensor networks
 - Health-care: personal area networks
 - · Sustainability as a design goal

University of Massachusetts Amherst

Compsci 677: Distributed and Operating Systems

CS677: Distributed OS

Lec. 01

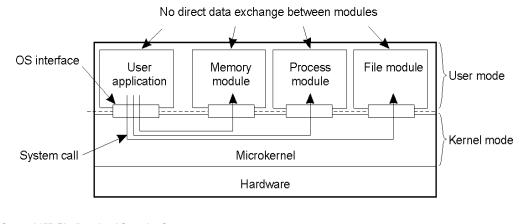
19

19

Uniprocessor Operating Systems

- An OS acts as a resource manager or an arbitrator- manages CPU, I/O devices, memory
- OS provides a virtual interface that is easier to use than hardware
- Structure of uniprocessor operating systems
 - Monolithic (e.g., MS-DOS, early UNIX)
 - One large kernel that handles everything
 - Layered design
 - Functionality is decomposed into N layers
 - Each layer uses services of layer N-1 and implements new service(s) for layer N+1

University of Massachusetts


Compsci 677: Distributed and Operating Systems

Lec. 01

Microkernel Operating Systems

Microkernel architecture

- Small kernel
- user-level servers implement additional functionality

University of Massachúsetts

Compsci 677: Distributed and Operating Systems

Lec. 01

21

Distributed Operating System

- Manages resources in a distributed system
 - Seamlessly and transparently to the user
- Looks to the user like a centralized OS
 - But operates on multiple independent CPUs
- Provides transparency
 - Location, migration, concurrency, replication,...
- Presents users with a virtual uniprocessor

University of Massachusetts

Compsci 677: Distributed and Operating Systems

Types of Distributed OSs

System	Description	Main Goal
DOS	Tightly-coupled operating system for multi-processors and homogeneous multicomputers	Hide and manage hardware resources
NOS	Loosely-coupled operating system for heterogeneous multicomputers (LAN and WAN)	Offer local services to remote clients
Middleware	Additional layer atop of NOS implementing general-purpose services	Provide distribution transparency

University of Massachusetts Amherst

Compsci 677: Distributed and Operating Systems

Lec. 01

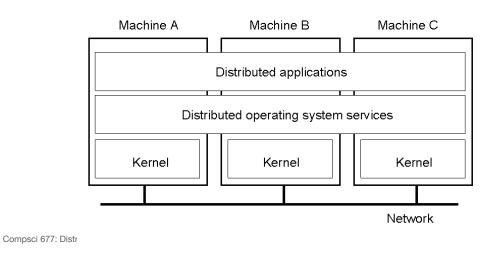
23

23

Multiprocessor Operating Systems

- Like a uniprocessor operating system
- Manages multiple CPUs transparently to the user
- Each processor has its own hardware cache
 - Maintain consistency of cached data

University of Massachusetts Amherst


Compsci 677: Distributed and Operating Systems

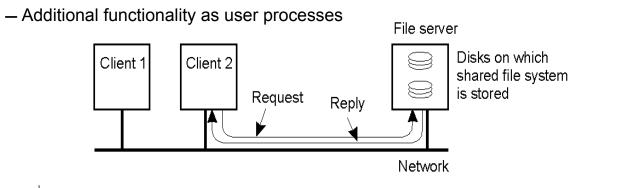
Lec. 01

Multicomputer Operating Systems

Example: MOSIX cluster - single system image

University of Massachusetts

Lec. 01


25

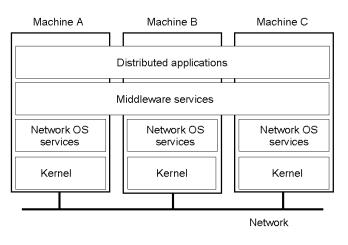
25

Network Operating System Machine B Machine C Machine A Distributed applications Network OS Network OS Network OS services services services Kernel Kernel Kernel Network University of Compsci 677: Distributed and Operating Systems Lec. 01 Massachúsetts

Network Operating System

- Employs a client-server model
 - Minimal OS kernel

University of Massachúsetts


Compsci 677: Distributed and Operating Systems

Lec. 01

27

Middleware-based Systems

General structure of a distributed system as middleware.

University of Massachusetts

Compsci 677: Distributed and Operating Systems

Lec. 01

Comparison between Systems

Item	Distributed OS		Network OS	Middleware-based
	Multiproc.	Multicomp.	Network 05	os
Degree of transparency	Very High	High	Low	High
Same OS on all nodes	Yes	Yes	No	No
Number of copies of OS	1	N	N	N
Basis for communication	Shared memory	Messages	Files	Model specific
Resource management	Global, central	Global, distributed	Per node	Per node
Scalability	No	Moderately	Yes	Varies
Openness	Depends on OS	Depends on OS	Open	Open

University of Massachusetts Amherst

Compsci 677: Distributed and Operating Systems

Lec. 01 29